organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-[(*E*)-4-(5-Bromo-1*H*-indol-3-yl)-1methyl-2,5,6,7-tetrahydro-1*H*-azepin-2ylidene]propan-2-one

Madeleine Helliwell,^a Masomeh Aghazadeh,^b Mehdi M. Baradarani^b* and John A. Joule^a

^aThe School of Chemistry, The University of Manchester, Manchester M13 9PL, England, and ^bDepartment of Chemistry, Faculty of Science, University of Urmia, Urmia 57135, Iran

Correspondence e-mail: mmbaradarani@yahoo.com

Received 15 April 2010; accepted 26 May 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.069; data-to-parameter ratio = 15.8.

In the title compound, $C_{18}H_{19}BrN_2O$, the seven-membered azepine ring adopts a twist-boat conformation: the bond angles about the azepine N atom are indicative of sp^2 hybridization. The dihedral angle between the plane of the carbon–carbon double bond of the enone unit and the mean plane of the indole ring is 27.8 (1)°. In the crystal, an N– $H\cdots O$ hydrogen bond links the molecules into chains along the *b* axis.

Related literature

For structure intrepretation tools, see: Allen (2002); Allen *et al.* (1993); Cremer & Pople (1975). For the reaction chemistry of (*Z*)-3-(1-methylpyrrolidin-2-ylidene)-3*H*-indole, see: Bishop *et al.* (1981*a*,*b*, 1982*a*,*b*); Harris & Joule (1978*a*,*b*).

a = 14.496 (2) Å

b = 6.6677 (10) Å

c = 16.372 (3) Å

Experimental

Crystal data $C_{18}H_{19}BrN_2O$ $M_r = 359.26$

Monoclinic, $P2_1/n$

	Bruker APEX CCD area-detector
	diffractometer
2	Absorption correction: multi-scan
/-	(C A D A D C C + 11 + 1 + 100C)

(SADABS; Sheldrick, 1996) $T_{min} = 0.829, T_{max} = 1.000$

Refinement

 $\beta = 90.267 \ (2)^{\circ}$

Z = 4

V = 1582.4 (4) Å³

Mo $K\alpha$ radiation

Data collection

 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.069$ S = 1.253239 reflections 205 parameters $\mu = 2.60 \text{ mm}^{-1}$ T = 100 K $0.30 \times 0.20 \times 0.20 \text{ mm}$

12098 measured reflections 3239 independent reflections 3021 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.023$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} & \Delta\rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3} \\ & \Delta\rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$	
$N1 - H1N \cdots O1^{i}$	0.78 (2)	2.02 (2)	2.7549 (19)	159 (2)	
Symmetry code: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.					

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL* and *PLATON*.

The authors are grateful to the University of Urmia for financial support of the preparative aspects of this work. MA thanks the Daana Pharmaceutical Co (Tabriz-Iran) for the infrared spectra.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2030).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Allen, F. H., Howard, J. A. K. & Pitchford, N. A. (1993). Acta Cryst. B49, 910–928.
- Bishop, D. I., Al-Khawaja, I. K., Heatley, F. & Joule, J. A. (1982a). J. Chem. Res. (S), 159.
- Bishop, D. I., Al-Khawaja, I. K., Heatley, F. & Joule, J. A. (1982b). J. Chem. Res. (M), 1766–1776.

Bishop, D. I., Al-Khawaja, I. K. & Joule, J. A. (1981a). J. Chem. Res. (S), 361.

Bishop, D. I., Al-Khawaja, I. K. & Joule, J. A. (1981b). J. Chem. Res. (M), 4279–4290.

Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Harris, M. & Joule, J. A. (1978a). J. Chem. Res. (S), 25.
- Harris, M. & Joule, J. A. (1978b). J. Chem. Res. (M), 0470-0483.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2010). E66, o1532 [doi:10.1107/S1600536810019975]

1-[(E)-4-(5-Bromo-1H-indol-3-yl)-1-methyl-2,5,6,7-tetrahydro-1H-azepin-2-ylidene]propan-2-one

M. Helliwell, M. Aghazadeh, M. M. Baradarani and J. A. Joule

Comment

Study of the reaction chemistry of (Z)-3-(1-methylpyrrolidin-2-ylidene)-3H-indole has revealed some remarkable properties and transformations. For example, it was shown to be a remarkably strong base, pK_a 10.6, for an imine, to be compared with that for 4a-methyl-1,2,3,4-tetrahydro-4a(i)H-carbazole with a pK_a of 3.6 (Harris and Joule, 1978a,b). It reacts with pentane-2,4-dione to give ((E)-4-(1H-indol-3-yl)- 2,5,6,7-tetrahydro-1-methyl-1H-azepin-2-ylidene)propan-2-one via an extensive rearrangement (Bishop et al., 1981a,b). In addition, it reacts with diethyl malonate giving 7-(2-aminophenyl)-5-ethoxycarbonyl-2,3-dihydro-4-hydroxy-1-methylindole, involving another extensive and unprecedented rearrangement (Bishop et al., 1982a,b). We detail here the crystal structure of the product ,(I), $C_{18}H_{19}BrN_2$, formed by reacting (Z)-5-bromo-3-(1-methylpyrrolidin-2-ylidene)-3H-indole with pentane-2,4-dione following the procedure for the des-bromo-prototype (Bishop et al., 1981a,b), (Fig. 1), leading to a 5-bromoindol-3-yl-substituted tetrahydroazepine, (I).

The seven-membered azepine ring adopts a twist-boat conformation as shown by the puckering parameters (Cremer & Pople, 1975; Allen et al., 1993) $q_2=1.008$ (2); $q_3=0.176$ (2); $\varphi_2=298.0$ (1); $\varphi_3=34.4$ (6) ° (Spek, 2009), Fig.2. Bond distances and angles in (I) are in the normal range (Allen, 2002). The planar 5-bromoindole bicycle is not coplanar with the enone in the seven-membered azepine ring. The dihedral angle between the enone double bond and the mean plane of the indole ring is 27.8 (1) °. The azepine nitrogen is sp² hybridized, with the sum of the angles around it being 359.4 °, indicating its conjugating interaction with the exocyclic enone, i.e. it is a vinylogous amide nitrogen. The exocyclic double bond has E geometry. A N1—H1…O1 hydrogen bond between the indole ring and the carbonyl group extending from the propan-2-one group links the molecules into chains along the b axis (Fig. 3).

Experimental

(*Z*)-5-Bromo-3-(1-methylpyrrolidin-2-ylidene)-3*H*-indole (0.5 g, 1.8 mmol) was heated in refluxing pentane-2,4-dione (11 ml) for 4 h (Fig. 1). When excess diketone was removed by distillation under vacuum, a yellow solid was obtained which was partitioned between 2*M* HCl and ethyl acetate. The basic product was isolated from the aqueous acidic layer by basification with potassium carbonate and extraction with dichloromethane (0.48 g, 78%). The product was recrystallized in *n*-hexane/ethanol to give yellow crystalline material, mp 459–461 K.

Refinement

H atoms bonded to C were included in calculated positions using the riding method, with aromatic, methylene and methyl C—H distances of 0.98, 0.99 and 0.95 Å, respectively and U~eq ~values 1.2 and 1.5 times those of the parent atoms; the torsion angles of the methyl H atoms were optimized to give the best fit to the electron density. The H atom bonded to N1 was found by difference Fourier methods and refined isotropically with N–H = 0.78 (2) Å.

Figures

Fig. 1. The reaction scheme for 5-bromo-3-(1-methylpyrrolidin-2-ylidene)-3H -indole with pentane-2,4-dione to form (I), $C_{18}H_{19}BrN_2$.

Fig. 2. The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.

Fig. 3. Packing arrangement of (I) viewed down a. Dashed lines indicate N—H···O hydrogen bonds between the indole ring and the carbonyl group extending from the propan-2-one group linking the molecules into chains along the c axis.

1-[(E)-4-(5-Bromo-1H-indol-3-yl)-1-methyl-2,5,6,7-tetrahydro-1H-azepin-2-ylidene]propan-2-one

Crystal data

C₁₈H₁₉BrN₂O $M_r = 359.26$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 14.496 (2) Å b = 6.6677 (10) Å c = 16.372 (3) Å $\beta = 90.267$ (2)° V = 1582.4 (4) Å³ Z = 4

F(000) = 736
$D_{\rm x} = 1.508 {\rm ~Mg~m}^{-3}$
Melting point = 459–461 K
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 915 reflections
$\theta = 2.8 - 26.4^{\circ}$
$\mu = 2.60 \text{ mm}^{-1}$
T = 100 K
Block, yellow
$0.30\times0.20\times0.20\ mm$

Data collection

Bruker APEX CCD area-detector diffractometer	3239 independent reflections
Radiation source: fine-focus sealed tube	3021 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.023$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
ϕ and ω scans	$h = -17 \rightarrow 18$
Absorption correction: multi-scan	$k = -8 \rightarrow 8$

(SADABS; Sheldrick, 1996)	
$T_{\min} = 0.829, T_{\max} = 1.000$	$l = -20 \rightarrow 20$
12098 measured reflections	

Refinement

metnods	
Least-squares matrix: full Secondary atom site location: difference Fourier r	nap
$R[F^2 > 2\sigma(F^2)] = 0.027$ Hydrogen site location: inferred from neighbouring sites	ıg
$wR(F^2) = 0.069$ H atoms treated by a mixture of independent and constrained refinement	
S = 1.25 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0342P)^{2} + 0.3299P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	
3239 reflections $(\Delta/\sigma)_{max} = 0.031$	
205 parameters $\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$	
0 restraints $\Delta \rho_{\min} = -0.23 \text{ e} \text{ Å}^{-3}$	

Special details

Experimental. ¹H-NMR (CDCl₃) δ (ppm) 2.0 (2H, qn, J = 6.6 Hz, azepin-6-yl-H₂), 2.18 (3H, s, MeCO overlying 2H, m, azepin-5-yl-H₂), 3.14 (1H, s, MeN), 3.41 (2H, t, J = 6.3 Hz, azepin-7-yl-H₂), 5.19 (1H, s, exocyclic =CH), 6.35 (1H, s, azepin-3-yl-H), 7.0 (1H, d, J = 8.7 Hz, ArH), 7.13 (1H, d, J = 8.7 Hz, ArH), 7.23 (1H, s, indol-4-yl-H), 7.93 (1H, s, indol-2-yl-H), 11.12 (1H, bs, NH). ¹³C-NMR (CDCl₃) δ 28.8, 31.1, 31.4, 39.7, 52.2, 94.6, 113.4, 113.6, 119.6, 122.4, 124.2, 126.4, 127.1, 134.5, 141.3, 163.9, 193.4. ν_{max} 2915, 1611, 1506, 1340, 1189, 972, 787. λ_{max} (EtOH) 236, 261, 350 nm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F^2 against ALL reflections. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent i	isotropic displacement parameters ((A^2)
---	-------------------------------------	---------

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.545967 (12)	1.20143 (3)	0.175612 (11)	0.01975 (8)
01	0.13649 (9)	0.9119 (2)	0.03015 (7)	0.0188 (3)
N1	0.35260 (10)	0.4764 (2)	0.30389 (9)	0.0153 (3)
N2	0.29940 (10)	0.4751 (2)	-0.09752 (9)	0.0140 (3)
C1	0.30698 (11)	0.4879 (3)	0.08357 (10)	0.0130 (3)
C2	0.28922 (11)	0.6432 (3)	0.03283 (10)	0.0135 (3)
H2	0.2962	0.7749	0.0542	0.016*
C3	0.26004 (11)	0.6240 (3)	-0.05267 (10)	0.0131 (3)

C4	0.38380 (12)	0.3749 (3)	-0.06878 (10)	0.0161 (4)
H4A	0.4246	0.4753	-0.0425	0.019*
H4B	0.4169	0.3188	-0.1163	0.019*
C5	0.36434 (14)	0.2070 (3)	-0.00819 (11)	0.0179 (4)
H5A	0.4223	0.1688	0.0200	0.021*
H5B	0.3410	0.0879	-0.0379	0.021*
C6	0.29263 (13)	0.2741 (3)	0.05526 (11)	0.0165 (4)
H6A	0.2301	0.2616	0.0311	0.020*
H6B	0.2960	0.1836	0.1031	0.020*
C7	0.33667 (11)	0.5212 (3)	0.16813 (10)	0.0122 (3)
C8	0.38650 (11)	0.6899 (2)	0.20169 (10)	0.0118 (3)
C9	0.43010 (11)	0.8588 (3)	0.16825 (10)	0.0135 (3)
Н9	0.4274	0.8853	0.1113	0.016*
C10	0.47689 (12)	0.9849 (3)	0.22064 (11)	0.0151 (3)
C11	0.47997 (12)	0.9571 (3)	0.30543 (11)	0.0180 (4)
H11	0.5106	1.0521	0.3393	0.022*
C12	0.43834 (13)	0.7910 (3)	0.33961 (11)	0.0170 (4)
H12	0.4396	0.7689	0.3969	0.020*
C13	0.39445 (11)	0.6568 (3)	0.28686 (10)	0.0138 (3)
C14	0.31950 (11)	0.3958 (3)	0.23342 (10)	0.0146 (3)
H14	0.2887	0.2703	0.2296	0.017*
C15	0.19750 (12)	0.7566 (3)	-0.08831 (10)	0.0147 (3)
H15	0.1897	0.7498	-0.1459	0.018*
C16	0.14431 (11)	0.9017 (3)	-0.04539 (10)	0.0143 (3)
C17	0.09459 (12)	1.0600 (3)	-0.09551 (11)	0.0181 (4)
H17A	0.0310	1.0732	-0.0762	0.027*
H17B	0.0941	1.0201	-0.1531	0.027*
H17C	0.1265	1.1887	-0.0896	0.027*
C18	0.26809 (13)	0.4286 (3)	-0.18007 (10)	0.0183 (4)
H18A	0.2007	0.4375	-0.1826	0.027*
H18B	0.2875	0.2925	-0.1946	0.027*
H18C	0.2950	0.5246	-0.2185	0.027*
H1N	0.3516 (15)	0.431 (3)	0.3474 (14)	0.023 (6)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.02014 (12)	0.01765 (12)	0.02146 (12)	-0.00671 (7)	-0.00231 (8)	0.00178 (7)
01	0.0215 (6)	0.0241 (7)	0.0106 (6)	0.0039 (5)	-0.0001 (5)	-0.0015 (5)
N1	0.0172 (7)	0.0186 (8)	0.0102 (7)	-0.0021 (6)	-0.0003 (6)	0.0039 (6)
N2	0.0162 (7)	0.0159 (7)	0.0099 (7)	0.0025 (6)	-0.0014 (5)	-0.0004 (6)
C1	0.0106 (8)	0.0158 (8)	0.0125 (8)	-0.0015 (6)	0.0008 (6)	-0.0009 (7)
C2	0.0116 (8)	0.0157 (8)	0.0132 (8)	-0.0010 (6)	-0.0004 (6)	-0.0017 (7)
C3	0.0131 (8)	0.0146 (8)	0.0116 (8)	-0.0038 (7)	0.0006 (6)	0.0005 (7)
C4	0.0178 (9)	0.0164 (9)	0.0140 (8)	0.0028 (7)	0.0012 (7)	0.0013 (7)
C5	0.0249 (10)	0.0130 (9)	0.0158 (9)	0.0016 (7)	-0.0007 (8)	-0.0005 (7)
C6	0.0218 (9)	0.0151 (9)	0.0126 (8)	-0.0036 (7)	-0.0010 (7)	0.0013 (7)
C7	0.0097 (8)	0.0147 (8)	0.0122 (8)	0.0019 (6)	0.0000 (6)	0.0001 (6)

C8	0.0099 (8)	0.0143 (8)	0.0112 (8)	0.0029 (6)	0.0002 (6)	-0.0004 (6)
C9	0.0124 (8)	0.0160 (8)	0.0121 (8)	0.0016 (7)	0.0000 (6)	0.0000 (7)
C10	0.0127 (8)	0.0140 (8)	0.0186 (9)	-0.0002 (6)	-0.0002 (7)	0.0012 (7)
C11	0.0180 (9)	0.0200 (9)	0.0160 (9)	-0.0019 (7)	-0.0037 (7)	-0.0040(7)
C12	0.0170 (9)	0.0217 (10)	0.0124 (8)	0.0018 (7)	-0.0017 (7)	-0.0007 (7)
C13	0.0109 (8)	0.0174 (8)	0.0129 (8)	0.0011 (7)	-0.0002 (6)	0.0011 (7)
C14	0.0133 (8)	0.0160 (9)	0.0144 (8)	-0.0002 (7)	-0.0009 (6)	0.0006 (7)
C15	0.0159 (9)	0.0191 (8)	0.0092 (8)	-0.0011 (7)	-0.0023 (7)	0.0006 (7)
C16	0.0123 (8)	0.0161 (9)	0.0145 (8)	-0.0028 (7)	-0.0015 (6)	-0.0001 (7)
C17	0.0184 (9)	0.0200 (9)	0.0158 (9)	0.0028 (7)	-0.0012 (7)	0.0018 (7)
C18	0.0230 (9)	0.0185 (9)	0.0134 (8)	-0.0002 (7)	-0.0013 (7)	-0.0038 (7)

Geometric parameters (Å, °)

Br1-C10	1.9073 (17)	C7—C14	1.381 (2)
O1—C16	1.244 (2)	С7—С8	1.444 (2)
N1—C14	1.358 (2)	C8—C9	1.404 (2)
N1—C13	1.376 (2)	C8—C13	1.416 (2)
N1—H1N	0.78 (2)	C9—C10	1.377 (2)
N2—C3	1.362 (2)	С9—Н9	0.9500
N2—C18	1.457 (2)	C10—C11	1.401 (2)
N2—C4	1.469 (2)	C11—C12	1.381 (3)
C1—C2	1.352 (2)	C11—H11	0.9500
C1—C7	1.465 (2)	C12—C13	1.395 (2)
C1—C6	1.513 (2)	С12—Н12	0.9500
C2—C3	1.466 (2)	C14—H14	0.9500
С2—Н2	0.9500	C15—C16	1.424 (2)
C3—C15	1.393 (2)	С15—Н15	0.9500
C4—C5	1.523 (2)	C16—C17	1.517 (2)
C4—H4A	0.9900	C17—H17A	0.9800
C4—H4B	0.9900	С17—Н17В	0.9800
C5—C6	1.540 (3)	С17—Н17С	0.9800
C5—H5A	0.9900	C18—H18A	0.9800
С5—Н5В	0.9900	C18—H18B	0.9800
С6—Н6А	0.9900	C18—H18C	0.9800
С6—Н6В	0.9900		
C14—N1—C13	109.16 (15)	C13—C8—C7	106.97 (15)
C14—N1—H1N	128.0 (17)	C10—C9—C8	117.91 (15)
C13—N1—H1N	122.8 (17)	С10—С9—Н9	121.0
C3—N2—C18	121.71 (14)	С8—С9—Н9	121.0
C3—N2—C4	120.60 (14)	C9—C10—C11	123.34 (16)
C18—N2—C4	117.12 (14)	C9—C10—Br1	118.64 (13)
C2—C1—C7	121.26 (15)	C11-C10-Br1	117.95 (13)
C2—C1—C6	120.54 (15)	C12-C11-C10	119.71 (16)
C7—C1—C6	118.15 (15)	C12-C11-H11	120.1
C1—C2—C3	124.97 (16)	C10-C11-H11	120.1
С1—С2—Н2	117.5	C11—C12—C13	117.54 (17)
С3—С2—Н2	117.5	C11—C12—H12	121.2
N2—C3—C15	120.71 (15)	C13—C12—H12	121.2

N2—C3—C2	117.31 (15)	N1—C13—C12	129.44 (16)
C15—C3—C2	121.94 (15)	N1—C13—C8	107.56 (15)
N2—C4—C5	112.73 (15)	C12—C13—C8	123.00 (16)
N2—C4—H4A	109.0	N1-C14-C7	110.71 (16)
С5—С4—Н4А	109.0	N1-C14-H14	124.6
N2—C4—H4B	109.0	C7—C14—H14	124.6
C5—C4—H4B	109.0	C3—C15—C16	125.26 (16)
H4A—C4—H4B	107.8	C3—C15—H15	117.4
C4—C5—C6	110.69 (14)	C16—C15—H15	117.4
C4—C5—H5A	109.5	O1-C16-C15	125.42 (16)
С6—С5—Н5А	109.5	O1—C16—C17	117.02 (15)
C4—C5—H5B	109.5	C15—C16—C17	117.55 (15)
С6—С5—Н5В	109.5	С16—С17—Н17А	109.5
H5A—C5—H5B	108.1	С16—С17—Н17В	109.5
C1—C6—C5	112.85 (15)	H17A—C17—H17B	109.5
С1—С6—Н6А	109.0	С16—С17—Н17С	109.5
С5—С6—Н6А	109.0	H17A—C17—H17C	109.5
С1—С6—Н6В	109.0	H17B—C17—H17C	109.5
С5—С6—Н6В	109.0	N2	109.5
H6A—C6—H6B	107.8	N2—C18—H18B	109.5
C14—C7—C8	105.58 (15)	H18A—C18—H18B	109.5
C14—C7—C1	125.92 (16)	N2—C18—H18C	109.5
C8—C7—C1	128.47 (15)	H18A—C18—H18C	109.5
C9—C8—C13	118.31 (15)	H18B—C18—H18C	109.5
C9—C8—C7	134.56 (16)		
C7—C1—C2—C3	179.45 (15)	C13—C8—C9—C10	-1.1 (2)
C6—C1—C2—C3	-3.2 (3)	C7—C8—C9—C10	-175.93 (18)
C18—N2—C3—C15	-9.5 (2)	C8—C9—C10—C11	-2.6 (3)
C4—N2—C3—C15	161.62 (16)	C8—C9—C10—Br1	174.36 (12)
C18—N2—C3—C2	173.07 (15)	C9—C10—C11—C12	3.2 (3)
C4—N2—C3—C2	-15.8 (2)	Br1-C10-C11-C12	-173.73 (14)
C1—C2—C3—N2	-38.6 (2)	C10-C11-C12-C13	0.0 (3)
C1—C2—C3—C15	144.00 (18)	C14—N1—C13—C12	-179.52 (18)
C3—N2—C4—C5	83.4 (2)	C14—N1—C13—C8	0.26 (19)
C18—N2—C4—C5	-105.10 (17)	C11—C12—C13—N1	176.04 (18)
N2—C4—C5—C6	-44.4 (2)	C11—C12—C13—C8	-3.7 (3)
C2—C1—C6—C5	70.7 (2)	C9—C8—C13—N1	-175.47 (15)
C7—C1—C6—C5	-111.84 (17)	C7—C8—C13—N1	0.68 (19)
C4—C5—C6—C1	-40.5 (2)	C9—C8—C13—C12	4.3 (3)
C2—C1—C7—C14	150.24 (18)	C7—C8—C13—C12	-179.53 (16)
C6—C1—C7—C14	-27.2 (2)	C13—N1—C14—C7	-1.2 (2)
C2—C1—C7—C8	-27.8 (3)	C8—C7—C14—N1	1.53 (19)
C6—C1—C7—C8	154.82 (17)	C1—C7—C14—N1	-176.84 (15)
C14—C7—C8—C9	173.91 (19)	N2—C3—C15—C16	172.13 (16)
C1—C7—C8—C9	-7.8 (3)	C2—C3—C15—C16	-10.5 (3)
C14—C7—C8—C13	-1.33 (18)	C3—C15—C16—O1	-10.6 (3)
C1—C7—C8—C13	176.99 (16)	C3—C15—C16—C17	168.01 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!- \!$
N1—H1N····O1 ⁱ	0.78 (2)	2.02 (2)	2.7549 (19)	159 (2)
Symmetry codes: (i) $-x+1/2$, $y-1/2$, $-z+1/2$.				

Fig. 1

